How Replication Stress Drives Genome Instability
نویسندگان
چکیده
منابع مشابه
Oncogene-Induced Replication Stress Drives Genome Instability and Tumorigenesis
Genomic instability plays a key role in driving cancer development. It is already found in precancerous lesions and allows the acquisition of additional cancerous features. A major source of genomic instability in early stages of tumorigenesis is DNA replication stress. Normally, origin licensing and activation, as well as replication fork progression, are tightly regulated to allow faithful du...
متن کاملDNA replication stress, genome instability and aging
Genome instability is a fundamentally important component of aging in all eukaryotes. How age-related genome instability occurs remains unclear. The free radical theory of aging posits oxidative damage to DNA and other cellular constituents as a primary determinant of aging. More recent versions of this theory predict that mitochondria are a major source of reactive oxygen species (ROS) that ca...
متن کاملSURVEY AND SUMMARY DNA replication stress, genome instability and aging
Genome instability is a fundamentally important component of aging in all eukaryotes. How agerelated genome instability occurs remains unclear. The free radical theory of aging posits oxidative damage to DNA and other cellular constituents as a primary determinant of aging. More recent versions of this theory predict that mitochondria are a major source of reactive oxygen species (ROS) that cau...
متن کاملNuclear envelope rupture drives genome instability in cancer
The nuclear envelope, composed of two lipid bilayers and numerous accessory proteins, has evolved to house the genetic material of all eukaryotic cells. In so doing, the nuclear envelope provides a physical barrier between chromosomes and the cytoplasm. Once believed to be highly stable, recent studies demonstrate that the nuclear envelope is prone to rupture. These rupture events expose chromo...
متن کاملHow does genome instability affect lifespan?
The genome is composed not only of genes but also of several noncoding functional elements (NOCs/ncFE, here I use NOCs), such as transcriptional promoters, enhancers, replication origins, centromeres and telomeres. rDNA has both gene and NOC characteristics. Thus, the rDNA encodes ribosomal RNAs, components of the ribosomes, that account for approximately 80% of the total RNA in a cell. However...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The FASEB Journal
سال: 2019
ISSN: 0892-6638,1530-6860
DOI: 10.1096/fasebj.2019.33.1_supplement.345.4